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Stresses and deformation at grain boundaries

By W. BEERE
Central Electricity Generating Board, Berkeley Nuclear Laboratories,
Berkeley, Gloucestershire, U.K.

A

[Plates 1 and 2]

N
A

Grain boundary sliding is frequently observed during the creep of polycrystals and this
can alter both the internal stresses and the creep rate. Sliding arises because the shear
and normal forces acting on the grain boundaries can be relaxed by separate
mechanisms at different rates. If sliding is easy the shear forces can in the limit tend
to zero. The normal forces are then relaxed more slowly by plastic deformation inside
the grain or by diffusion creep. While the former distorts the interior of the grain the
latter does not. Several two dimensional models of the diffusion mechanism have
appeared in which rigid slabs slide past each other. Diffusion plates out material on
the boundaries and controls grain movement normal to the boundary. It is also
possible to solve the ‘rigid grain’ situation in three dimensions when rapid diffusion
at boundaries relaxes the normal forces. The shear process then controls the grain
motion and it is necessary that the grains roll over each other.
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1. INTRODUCGTION

Grain boundary sliding is frequently observed in metals and ceramics deformed at elevated
temperatures. Localized strains within the material can be highly inhomogeneous with exten-
sive shear at the boundary planes. Sliding never occurs on its own in polycrystals, but has to be
accompanied by other deformation mechanisms. The sliding and accommodating processes
can conveniently be classified into three categories.

First, the grains can deform by diffusion creep, figure 1(a). Material removed from one
boundary is deposited at another thus moving adjacent grain centres normal to their common
boundary.

Examination of the grain geometry shows that sliding must occur simultaneously to prevent
gaps appearing at grain boundaries (Lifshitz 1963 ; Gibbs 1965 ; Stephens 1971 ; Gates 1975). The
grain interior does not deform and all displacements of adjacent grain centres parallel to a
common boundary have to take place by boundary sliding. Diffusion creep and grain boundary
sliding are mutually accommodating. Usually the sliding process has a short relaxation time
compared with diffusion across the grain. Thus the shear stresses on the boundaries necessary to
cause sliding at a rate compatible with the diffusion process are vanishingly low (Raj & Ashby
1971).

A similar type of deformation can be envisaged again in which the interior of the grain does
not deform, but in which boundary shear forces are large, figure 1 (). An important feature of
this type of deformation is grain rotation. Frictional forces developed on the boundary rotate
the atomic lattice (Beeré 1976). Possible applications are in superplastic creep and diffusion
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creep near a threshold stress.
Lastly, at higher stresses dislocation creep in the grain interior becomes important, figure 1 (¢).
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178 W. BEERE

Shear between grain centres takes place both by shear inside the grain and by boundary sliding
(Bell & Langdon 1969; Crossman & Ashby 1975; Speight 1976).

Examples of all three categories are available. Figure 2, plate 1, is a scanning electron micro-
graph showing sliding offsets during the diffusion creep of hyperstoichiometric UO, (Reynolds,
Burton & Speight 1975). The scratch lines produced during polishing of the originally flat
surface show clear offsets at grain boundaries. The scratch lines remain straight in the grain
interior indicating a negligible contribution from dislocation creep. Some grains have moved
normal to the surface and a few grain boundaries have separated. The UO, was crept under
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Ficure 1. Three categories of grain boundary sliding: (a) diffusion creep (zero boundary shear stress); (b) rigid
grain creep (finite boundary shear stress); and (¢) dislocation creep (with grain boundary sliding). Types
(@) and (b) have rigid grain interiors while the grain interior deforms plastically in (¢). Grain boundary shear
forces are absent in (z2) and can be fully relaxed in (¢) but are present in (b).
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FIGURE 2. A scanning electron micrograph of UQ,. The initially flat polished surface shows ledges, sliding offsets
of surface scratches and cracks resulting from grain boundary sliding during crcep. (Reynolds et al. 1975.)
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Ficure 4. Deformation by grain boundary sliding and dislocation creep of an initially rectangular
8 um grid on aluminium. (Pond et al. 19%6.)
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Ficure 8. Cracks in a UO, compression specimen. The wedging action of adjacent grains coupled with grain
boundary sliding produces tensile forces and cracking. (Reynolds et al. 1975.)
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FiGure 13. Grain boundary sliding in aluminium revealed by displacements in an initially rectangular 8pm grid.
Sliding between grains 1 and 3 has created a slip band in grain 2. (Pond ef al. 1976.)
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 179

compression, but relaxation of the shear stresses results in tensile forces developing across
certain boundary orientations.

Significant grain rotation occurs during stage II superplastic creep. Figure 3 shows the
angular variation of four grains in a lead tin eutectic (Geckinli & Barrett 1976). Quite large
rates of rotation are observed although the angular variation seldom exceeds 30°.

Dislocation creep and grain boundary sliding are common to a very large number of systems.
Figure 4, plate 1, shows a scanning electron micrograph of pure aluminium crept at high
temperature iz situ in the scanning electron microscope (Pond, Smith & Southerden 1976). The
grid bars were originally a rectangular array spaced 8 pm apart before creep. After deformation
the grid shows internal grain deformation and sliding along the three boundaries present.

Analysis of combined sliding and accommodating deformation is facilitated by knowledge of
the boundary stresses and the possible sliding displacements. The two types of sliding with rigid
grain interiors, figure 1(a, b), are now examined in detail.

Ficure 5. The stresses acting on idealized hexagonal grains and elements of grains.

2. STRESSES ACTING ACROSS GRAIN BOUNDARIES

The normal and shear stresses on a boundary in a homogeneous body behave as tensors and
their value can be calculated simply from the boundary orientation. When the boundaries slide
the body becomes inhomogeneous, the boundary stresses change and have to be recalculated
taking the grain geometry into account. The complex morphology of real grains has not been
treated, but typically a much simpler grain shape is substituted to ease calculations. Hexagonal
grains are often chosen because they are the simplest shape in which three grain boundaries
meet in a position of stable equilibrium. The stress system on the hexagon boundaries is calcu-
lated for an aggregate of many regular grains randomly orientated with respect to an applied
uniaxial tensile stress. The same procedure could be followed for any superimposed system
of stresses.

Figure 5 shows three grains of the aggregate. Each grain is assumed to be indistinguishable
from its neighbours. Hence there are three types of boundary since for instance a vertical

12-2
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180 W. BEERE

boundary (figure 5) behaves identically to any other vertical boundary. The three boundary
types are labelled a, b and c.

The stresses are calculated by removing elements of the grains and balancing forces. The
stress distribution inside the grains is not known, but the internal stresses along the dashed lines
(figure 5) repeat cyclically in each grain. Hence the average stress on the dashed face of one of
the elements is the same as the average stress on the complete dashed line in the aggregate. Since
the line passes completely through the aggregate the average stress must support the applied
load and so its value is the same as the stress on a similarly orientated plane in a homogeneous

1.0

O[x rad

Ficure 6. The shear force acting on a grain boundary of an idealized hexagonal grain for a homogeneous solid,
broken line, and a grain with fully relaxed normal boundary forces.

body. Putting 0y, = o cos? 0, etc., where o is the uniaxial stress and 6 the angle between the
stress axis and the 1 axis, the forces on the elements can be balanced vertically and horizontally

giving
, (1)

o, (2)

=

Ta+Tp+Te =

ojco

Oa+0p+0e =

where 7, and o, are the average shear and normal stresses on an ‘a’ boundary respectively and
the subscripts b and c refer to the other boundaries.

The calculation can proceed further only if assumptions are made about the material
properties. It is simplest to deal with complete relaxation of either the normal or the shear
stresses on the boundary.

If for instance the normal stresses are relaxed they are everywhere equal because only an
infinitesimal deviatoric stress is necessary. From equation (2) their value must be

Os = Op = O¢ = 0.
The shear stress on a ‘c’ boundary is then (Beeré 1976)
Te = 20 sin 0 cos 0, (3)

which is exactly twice that for a homogeneous solid (figure 6). The stresses on the ‘a’ and ‘b’
boundaries can be found by adding multiples of $x to 6. Conversely, if the shear stresses are
relaxed, 7, = 7, = 7, = 0, then the normal stress on a ‘c’ boundary is

oc = 0(3—2sin?0). (4)
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 181

The normal stress is illustrated in figure 7 along with the stress in a homogeneous solid. Relaxing
the shear stresses doubles the normal stresses about their mean value. During tensile creep com-
pressive forces appear across certain boundaries. Likewise, if the external load is compressive
tensile forces appear which can be large enough to cause fracture on the boundary. This is
illustrated in figure 8, plate 2 (Reynolds et al. 1975), which shows a UO,, specimen crept at
80 MPa and 1350 °C.

oo

O[n rad

Ficure 7. The normal force acting on a grain boundary of an idealized hexagonal grain for a
homogeneous solid, broken line, and a grain with fully relaxed boundary shear forces.

100,

80

60}

401

percentage of triple points with fracture

(- ! 1 I J
0 0.2 0.4

oylo

Ficure 9. The percentage of triple points associated with a cracked boundary plotted against the
ratio of average tensile fracture stress to applied compressive stress.

Significant fracture is expected to take place when the average tensile fracture stress is less
than half the applied compressive stress. If it is assumed that fracture takes place when the
average tensile stress exceeds a critical value oy, then assuming a random distribution of
boundary orientations the percentage of boundaries fractured can be calculated from equa-
tion (4). The result is illustrated in figure 9. Thus if oy/o is 0.45, the initial application of the
external load causes about 30 %, of triple points to be associated with a fractured boundary. An
examination of the stress system near a fractured boundary reveals that the locality can no
longer support an applied uniaxial stress. The grain can rapidly relax the local stress system by
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grain boundary sliding redistributing part of its load onto unfractured grains. This causes more
grains to fracture. If the fracture stress is sufficiently high this redistribution mechanism
eventually stabilizes. Below a critical value of oy/o" the mechanism becomes unstable and the
polycrystal suffers catastrophic fracture. This is best observed in doped ceramics in which the
dopant segregates preferentially to the grain boundary reducing the fracture stress without
significantly altering the creep properties of the grain. These materials are susceptible to
catastrophic intergranular fracture during the application of large compressive stresses
(Reynolds 1977).

TaABLE 1
homogeneous  fully relaxed
invariant solid shear stresses
0, +0,+0, 3o i
o2+ o3+ 0? 302 $o?
To+ T+ 7, 0 0
TatTo+ T go? 0

Equations (1) and (2) show that the sum of the normal and shear stresses are both invariant
with respect to rotation of the applied stress. Other invariants are listed in table 1 with values
when the boundary shear stresses are zero and for a homogeneous material. The ‘invariants’
can alter in value during boundary relaxation.

3. GRAIN MOTION

The previous section considered the stresses acting on grain boundaries. Next it is pertinent
to ask how the boundary stresses plastically deform the grain. First, the geometry of the possible
motions is considered followed by the rate of motion resulting from the material properties.

When the dominant deformation mechanism is diffusion creep the interiors of the grains do
not deform. Material is transferred preferentially between boundaries usually by a vacancy
mechanism. If again we treat a two dimensional array of hexagons, the hexagons behave as
rigid slabs with some boundaries gaining material while others lose material. If the increase in
distance between grain centres across an ‘a’ boundary is N, and the sliding displacement is S,
then there are six separate movements (figure 10). These are not all independent. If gaps do
not appear on the boundary during creep then analysis shows that the sum of the normal and
sliding displacements are both zero, i.e.

No+Np+ N = 0, (5)

Sa+Sp+Se = 0, (6)

where the subscripts refer to the boundary type. Equation (5) is simply a statement that the
volume of material remains constant.

If the motion of one grain is indistinguishable from its neighbours then the motion between
adjacent grain centres is identical to the bulk motion of the aggregate. When the aggregate
deforms uniaxially by a strain ¢ the strain in the coordinate system of the grain centres, €45 18
given by the equation:

€ = €3 CO8% 0 + 695 5in? 0 + (€15 +€5,) sin 6 cos 6. (7)
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 183

The strain between grain centres, €y, can also be written in terms of the boundary displace-
ments. Substitution into equation (7) gives the desired relation between the aggregate strain
and the normal and sliding boundary displacements.

ed = — (Ny+ M) (2 cos? 0—1) +—= (Ny— M) 2 sin 6 cos 0 (8)

¢3
¢3

—8p) (2 cos? 0 —1) +— (Sa+Sp—2Sc) 2 sin 0 cos 0, (9)

- L
=5

where d is the hexagon diameter.

Figure 10. The three sliding and three normal displacements of adjacent grains at a triple point.

The bulk specimen strain can be defined completely in terms of the normal displacements or
the sliding displacements. Thus, if diffusion changes the grain centre distances resulting in
creep, sliding must also take place and both types of displacement are mutually accommodating.

4, DIFFUSION CREEP

The equilibrium concentration of vacancies adjacent to a grain boundary depends on the
normal stress acting on the boundary. A difference in vacancy concentration between
boundaries sets up a vacancy flux. If we consider an ‘a’ boundary the rate of separation N, is

given by Na = const DR(ca— Lo — o) K Td, (10)
where D is the volume self-diffusion coeflicient, £ the atomic volume, £ Boltzmann’s constant
and T absolute temperature. The bracketed term takes account of the flux between both ‘a’
and ‘b’ and ‘a’ and ‘c’ boundaries. A detailed calculation gives the constant a value 3%r3/16
(Beeré 1976).

When diffusion creep is the rate controlling mechanism the boundary shear forces are con-
sidered to be vanishingly small and the normal stresses will be given from the previous calcula-
tion. From equations (4), (8) and (10) the creep rate is

= 15DoQ[kTd? : (11)

which is seen to be independent of orientation of the applied stress.
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This equation has been derived previously by a number of workers (Gibbs 1965; Raj & Ashby
1971; Herring 1950). In the models, like the present one, which consider total relaxation of
boundary shear stresses the numerical constant is about 50 9%, higher than in those calculations
which assume a stress distribution typical of a homogeneous solid. The equation can be
generalized further by inclusion of the Coble or grain boundary creep (Coble 1963) component
by replacing the diffusion coefficient D with (D +nD,d/d), where D, is the grain boundary
diffusion coefficient and ¢ the boundary width.

i
107! /0
[e)
J $
2 @O/ 9:0 TUOZ
o o
-3 , 8 0727,
é 0% cuossTh 8| & ]
5 &S
5] / o’
0 o 00
o1 / o/
/ Al,0; 0817, £
(o]
/
1075 . \ \ ,
102 1 102
stress/(MPa)

Ficure 11. The observed linear dependence of creep rate with applied stress for three materials deforming in
diffusion creep (Cu; Burton & Greenwood 1970; Al,Oy: Davies & Sinha Ray 1972; UQO,: Poteat & Yust
1968).

The linear relation between creep rate and stress has been recently reviewed as well as the
1/d? dependence for Nabarro-Herring creep and 1/d® dependence for Coble creep (Burton
1977). Figure 11 shows creep data for Cu (Burton & Greenwood 1970), UO, (Poteat & Yust
1968) and AL,O; (Davies & Sinha Ray 1972). The creep rate is compensated for grain size to
allow for simultaneous grain growth during the test. The data show the linear relation between
creep rate and uniaxial stress at low stresses. Increasing the stress rapidly increases the rate of
dislocation creep, which is an independent process, and this eventually becomes the dominant
deformation mechanism.

The value of the numerical constant in equation (11) is usually difficult to assess accurately
from experimental data because of uncertainty in the diffusion coefficient. There are exceptions,
and five independent observations of the volume self-diffusion coefficient in copper agree within
a factor of 1.5 (Butrymowicz, Manning & Read 1974) giving an observed value from figure 11
of 18 with an upper and lower limit of 27 and 12 respectively. The agreement with theory is
good considering the two dimensional nature and regularity of hexagonal grains.

The stress on the boundary calculated earlier was an average value for a particular
boundary. When the grains deform by diffusion creep the vacancy flux leaving unit area of
boundary is constant over the entire length of a particular boundary. The flux is proportional
to the difference in normal tensile forces acting locally on source and sink and inversely propor-
tional to the diffusion distance. Near a triple point the diffusion distance is small so the boundary
stress is also small and tends to zero at the triple point. This also satisfies the requirement that
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 185

there is no instantaneous change in stress at the triple point. At the centre of the boundary
the stress is largest reaching a value of 1.44 times the average value. This is illustrated in
figure 12.

The distribution of stress is sensitive to the deformation mode of the grains. If for instance the
dominant mechanism is dislocation creep, grain boundary sliding concentrates stress at the
triple points, in complete contrast to diffusion creep. Figure 13, plate 2, illustrates this point in
aluminium containing precipitates (Pond ef al. 1976). The perpendicular grid lines super-
imposed on the surface before creep show signs of grain boundary shear between grains 1 and 3.
The shear on this boundary has concentrated the stress at the triple point creating a slip band
in the adjacent grain. High localized stresses can lead to triple point cracking. Alternatively if
diffusion creep were rapid the stress concentrations would be absent, suppressing cracking.

1.5

=
(=]
T

o,/o (average)

o
o
]

1 1 i 1 Il L 1 Il

]
0 0.5 1.0
distance along boundary, (x/{)

Ficure 12. The variation of normal boundary force with distance along the boundary for
a material deforming by Nabarro-Herring creep.

5. GRAIN BOUNDARIES AS SOURCES AND SINKS FOR VACANCIES

A second type of creep can occur in which the grain interior does not deform and in which
shear forces play an important part in determining the grain trajectories. The application to
physical situations is best understood by considering the operation of grain boundary vacancy
sinks and sources. Several possible models are in existence and the mechanism of vacancy
absorption on grain boundary dislocations is not completely clear, but situations where
boundary shear stresses develop can often be envisaged.

Two types of boundary will be considered here, one in which vacancies are absorbed by
dislocation (or a similar defect) climb in the boundary (McLean 1971; Gates 1973; Das &
Marcinkowski 1972; Ashby 1969) and the second in which dislocation motion is unnecessary.
The first is illustrated in figure 14 (2) in which just two sets of parallel dislocations with arbitrary
Burgers vectors inhabit the boundary. If one set of dislocations is mobile and moves by simul-
taneous glide and climb the material on both sides of the boundary is displaced normally and
sheared relative to the boundary plane. A vacancy flux is required which may have to come
from another part of the crystal. Motion of the second set of dislocations can provide the
vacancies enabling sliding to take place at a rate limited only by vacancy diffusion between
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186 W. BEERE

dislocations. If the matecrial is deforming by diffusion creep the supply of vacancies from
external sources is limited by diffusion across the grain. The much shorter diffusion path
between dislocations enables sliding to rapidly releasc the boundary shear forces. In three
dimensions three arbitrary sets of dislocations are required to enable independent boundary
sliding in any direction. In genecral, three sets of intrinsic dislocations are necessary to provide
coincidence when the lattices on either side of the boundary are at some random orientation.

<0
o> vacancy
(o] 9 o> Oa
L 4 Y L oL ou— 9 9
bound \ ¢ A\
P NS S WS NS W W W 5 5 (b)
dislocation 6 (a)
climb and 7 %
glide <0 o7

FiGURE 14. A schematic diagram of a grain boundary in which (a) vacancies condense on dislocation cores
producing simultancous glide and climb and (4) vacancy condensation is independent of the dislocation
structure.

Several situations may develop which limit the mobility of boundary dislocations. Many
materials exhibit a marked decrease of the diffusion creep rate when the stress is reduced to
a value often in the range 1-10 MPa. The creep rate is then proportional to (o — o), where o,
is the threshold stress.

This may result from a reduction in the extrinsic dislocation nucleation rate in the boundary
(Burton 1973) or from precipitates blocking the path of boundary dislocations (Harris, Joncs,
Greenwood & Ward 1969). In both cascs the inhibition of dislocation motion inhibits the
ability of boundaries to emit vacancies and also prevents the dislocations from rapidly rclaxing
the shear forces. Diffusion creep rates are invariably slow near the threshold stress which limits
the ultimate specimen strain. As a consequence morphological changes in grain structure arc
small and unlikely to be observed.

In direct contrast the strains realized in stage II superplastic creep are cxtremely large.
Dcformation takes place predominantly at the grain boundary and the grain interior often
remains underformed. Low stress stage II creep has the following attributes: () no evidence of
internal slip lines; (b) scratch offsets are sharp; (¢) an almost equiaxed structure; (d) grains
relatively dislocation free; (¢) grains rotatc; (f) grains switch neighbours (see Edington, Meclton
& Cutler 1976). Several deformation mechanisms are based on grain boundary dislocations with
motion limited by diffusion barriers in the grain boundary structure or grain boundary disloca-
tion pilcups ncar the triple point. In each case the mechanism limits the rclaxation of both
shear forces and normal boundary forces.

If boundary dislocation motion is unnecessary for vacancy cmission or absorption the sliding
mechanism will be completely independent of diffusion creep (figure 144). If in this case the
sliding process has a different activation encrgy or stress dependence from diffusion creep,
situations can occur where sliding is rate controlling. Shear forces will develop on the boundaries
but the normal forces will everywhere relax to some constant value dependent on the externally
applied stress system.
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6. GRAIN BOUNDARY SLIDING CONTROL OF CREEP

Previously it was shown that shear forces are likely to develop on grain boundaries during
diffusion creep at low stresses near a threshold stress and during stage II superplastic creep.
The creep rate will be controlled either by the shear process with rapid relaxation of normal
forces or by simultaneous slow relaxation of both normal and shear forces. In both cases the
important feature from the point of grain motion is the effect of the shear forces. The friction
which develops between grains leads to rotation of the grain. This is not to be confused with
apparent rotation resulting from motion of the grain boundaries. The process to be discussed
rotates the lattice whereas boundary migration leaves the lattice orientation unchanged. The
principle of grain rotation is illustrated in figure 15 for square grains. The dotted lines (figure
15a) join the grain centres. When deformed uniaxially (figure 155) material is redistributed
between boundaries and the boundaries slide. When the boundary shear forces are not zero the
externally applied forces do work sliding the boundaries.

\

JH |
h l
1
;
1

(@ ) N\ @

Ficure 15. Six square grains (a) are deformed uniaxially, (b) producing grain boundary sliding on all faces.
Grain rotation (¢) allows reduction of the sliding displacement of the vertical faces without change in specimen
strain.

In the example figure 15(b) the vertical and horizontal boundaries slide by equal amounts.
The boundary viscosity, in general, will not be exactly uniform but can show variation due to
a number of effects such as mis-orientation and precipitate density. If the vertical boundaries
are more viscous than the horizontal boundaries, sliding can be reduced on the vertical
boundaries by allowing the grains to rotate. In figure 15(¢) sliding has been reduced to zero
on the vertical boundaries while maintaining the same bulk or grain centre strain. In this way
a given strain can be achieved with a smaller expenditure of energy.

The optimum rotation can be calculated by minimizing the rate of doing work during
deformation. This is now done for regular hexagons. The same problem has been treated in
three dimensions for a cubic array of grains (Beeré 1977). The results are very similar with the
exception that when the boundaries are all equally resistant to sliding the cubic grains must
still rotate by a small amount (see appendix).

The hexagonal array is illustrated in figure 16. The deformation of a grain is indistinguishable
from its neighbours and again the three types of boundary are labelled a, b and c. (This analysis
differs from the one previously where the grain deformation was allowed to vary between grains
(Beeré 1976).)
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188 W. BEERE

The sliding displacement strain rate %, on the ‘a’ boundaries is given by
Xy = Sa—ad, (12)

where S, is the shear displacement rate at the grain centre. The sum of the grain centre shears
is zero (equation (6)), hence the sum of the grain boundary shears is

o+ o + %o = — 30d. (13)
From equations (12) and (13) the grain centre shear is

38y = 2y — dp — Ao (14)

Ficure 16. The system of grain rotations for hexagons.

Previously the bulk strain ¢ was found in terms of the grain centre shears (equation (9)).
Substituting the grain boundary shears,

2,/3dé = (%a—4p) (4 cos? 0 —2) + (#a + &n — 24c) (4 sin 6 cos 6/y/3). (15)

The creep rate may now be calculated if it is known how the shear rate varies with stress.
When the normal and shear displacements on the boundary are interdependent processes the
boundary shear rate will depend on both normal and shear stress. When normal and shear
displacements are independent processes the normal stresses can be relaxed independently of
the shear forces. In the following calculation it is assumed that the normal stresses assume their
fully relaxed values (i.e. 0a = 0 = 0¢). This case is developed because the calculation is simpli-
fied, but the results are not likely to be greatly different for the case of a general system of
normal stresses.

The shear rate will be given by an equation of the type

Xy = AalT;L_llTa, (16)

where the modulus is to ensure the correct shear direction when 7 is even and A depends on the
material and creep mechanism
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 189

When the boundary shear rate varies linearly with stress (n = 1) and all boundaries are
equally resistant to shear, the creep rate is given by

é = Ao/d, (17)

independent of the orientation of the grains to the applied uniaxial stress, 0. When n = 2 the
creep rate is given by

é = L3 Ao?/d. (18)
101 _
(a) A ‘
n=1 n=2 (b)
B
=.
B
g
[
/\c Aa Ab é:
1.1 09 11 5
2 1 05 15
r 31 01 19
1 J
0 0.25 0.5 0 0.25 05

orientation, ffn rad

F1cure 17. The variation of creep rate with orientation of the applied stress for grain boundary sliding control of
creep when the sliding mechanism depends linearly on stress (¢) and on stress squared (b). The numbers
1, 2 and 38 refer to variation in the anisotropy of sliding resistance.

If boundary viscosity varies with boundary orientation the creep rates have to be calculated
numerically. This is done for stress exponents of = 1 and n = 2 (figures 172 and & respec-
tively). The average value of sliding resistance is kept constant, but a variation of up to a factor
of ten is allowed between boundaries. The creep rate is dependent on orientation although the
average creep rate for a random distribution of orientations is unchanged.

The optimum rate of grain rotation is found by minimizing the work done in achieving
a fixed strain. This is readily found provided that the normal forces are relaxed, that is if the
work done by the externally applied stress is primarily spent in grain boundary sliding. The
rate of working on unit area of boundary is then the product of shear velocity and shear stress

W oC ZaTa + %0 Tp + %eTe;
written in terms of the sliding shears, this becomes
Woc (1) |£,[0+m0n (o = a, b, c),
and in terms of grain centre motion and rotations
Woc (1/A,)17 |S, —od|d+nin (¢ = a, b, c).

The optimum rate of rotation is found by minimizing the rate of work done, W, at constant
specimen strain rates, Sa, Sp and Se.

Putting OW/[0& = 0 and solving numerically gives the results illustrated in figure 18 (a, 5) for
n = 1, 2, respectively. The resistance to sliding, A, is varied by up to a factor of 10 to 1 with
orientation. As expected, increasing the anisotropy of the grains increases the rotation.

The calculations can be compared with observed rotations in the scanning electron micro-
scope (Geckinli & Barrett 1976). Differentiating the variation of angle with strain (figure 3)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

Py
A \
‘A

/7

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

SOCIETY

Y |
AL

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

190 W. BEERE

gives the strain rate compensated rate of rotation, @/é, which is shown in figure 19. The maxi-
mum observed rate of rotation is about 0.6¢€. This rate would be achieved in the present model
when the boundaries vary by an order of magnitude in viscosity.

Although quite high rates of rotation are momentarily achieved the maximum angular
rotation is seldom more than 30° (figure 3). The grains appear to oscillate about a mean
orientation. This behaviour is predicted by the present model. If the angular rotation, @, is
positive (figure 185), then the rate of change of the angle @ is negative. This implies that a grain
situated on curve 3 in figure 18 (b) will tend to move to the position of stable equilibrium where
@ = 0 on the left hand side of the diagram.

1 F -
(a) I n=2 (b)
unstable

1 109 11
2 105 15

: 310119
- 1 J
0 0.5 1.0 0 0.5 1.0

orientation, 6

Ficure 18. The rates of grain rotation for hexagons with anisotropic sliding resistance.
The stable orientation is shown in (b).

-
0.6}
0.3
2 B
-3 S
£ o
b -
*6 -
= 1
—0.3} 1
|
1
—-0.61 !
.. L ( I 1 )
0 1 2 3 4 5

strain, €

Ficurr 19. The obscrved rate of grain rotation calculated from figure 3.

In this example the ‘a’ boundary is the most viscous by an order of magnitude. The position
of stability, @ = 0, is achieved when the ‘a’ boundary is perpendicular to the applied stress.
Little sliding then takes place on this boundary and intuitively we have the correct result.

The stable configuration is disturbed by grain rearrangement during creep. Grain
boundaries are often mobile and migrate during deformation resulting in simultaneous grain
growth. Relative movement of the grain centres during deformation also requires grain
boundary migration to maintain equilibrium angles at grain edges. This is illustrated in
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STRESSES AND DEFORMATION AT GRAIN BOUNDARIES 191

figure 20 in which hexagons undergo a shear strain of 0.25. The boundaries have been con-
structed such that they always meet at angles of #n at the triple point and pass midway
between grain centres. The latter maintains a constant number of indistinguishable grains. In
practice, limits on boundary mobility restrict the approach to ideal configurations. The
important feature, though, is the rotation of the boundary.

Ficure 20. Regular hexagons deformed in shear. The position of the boundaries has been calculated assuming
a constant number of identical grains maintaining equal angles at the triple points.

————

FIGURE 21. As figure 20, but deformed uniaxially. The broken lines show neighbour exchange
maintaining a more equiaxed grain shape.

In contrast, figure 21 shows the same hexagonal configuration subjected to uniaxial strains
of 0.25 and 0.50. Here the ideal configuration shows no boundary rotation. At 50 %, strain the
grains can reduce their boundary surface area (length) by neighbour exchange (Rachinger
1952; Ashby & Verrall 1973). This now results in boundary rotation.

In three dimensions boundary migration is complicated by the appearance of new grains at
a surface. Also boundary sliding viscosity will vary with change in boundary angle even when
adjacent lattices are kept at the same misorientation. Allowing for this grain rotation will still
orientate normally to the stress axis those boundaries most resistant to sliding. Grain rearrange-
ment will disturb these configurations, but equilibrium will be restored by rapid grain rotation.
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192 W. BEERE

7. SUMMARY

Non-uniform deformation resulting from grain boundary sliding can be divided into three
categories, namely (@) rigid grain interior with zero shear forces on boundary; (4) rigid grain
interior with non-zero shear forces on boundary; (¢) plastic deformation within grain. The first
type, situation (a), is the classical picture of diffusion creep. Deformation is limited by the rate
of vacancy diffusion across grains while the accommodating grain boundary sliding inde-
pendently relaxes the shear forces. The second type of deformation (b) occurs when an interface
reaction limits the deformation rate. The interface kinetics result from the nature of defects in
the grain boundary. The friction which develops between the grains during grain boundary
sliding causes the lattice of the grain to rotate. The fields of application are in diffusion creep
near a threshold stress and superplastic creep. Lastly, the grain interiors deform plastically by
dislocation creep when the applied stress is sufficiently large.

This paper is published by permission of the Central Electricity Generating Board.

APPENDIX

Figure A 1 shows one cube of an array located in a tensile specimen at some random
orientation to the tensile axis. The interior of the grain is considered to be rigid with all deforma-
tion taking place at or near the grain boundary. Shear displacement between adjacent grain
centres takes place by shear on the boundary. If the rate of grain boundary sliding is indepen-
dent of the normal stress across the boundary (sliding an independent process) the shear rate
is related to the boundary shear stress by a relation of the type é = Ag”/d, where A depends on
the boundary viscosity, d is the cube edge length and 7 is the stress exponent.

Ficure A1l. A cube randomly orientated in a tensile specimen.

If 03; and o7y, are the shear stresses on face 1 (figure A 25), then the shear in the 2 direction

is given by
¢ = (Ad) (03, +0%) "2 0y, (A1)

where the superscript s denotes sliding and (dé§;) is the actual displacement on the face. In the
absence of grain rotation €3, is equal to €y, the shear strain between grain centres. An equiaxed
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polycrystal does not undergo rotation when stretched uniaxially and so é,, = é,. From
equation (A 1) and the similar expression for €, it follows that

(051 +08) "V oy = (0f+0%) D2 0y, (A 2)
but oy, = 075, and so from equation (A 2)

Op = Oy (0 # 1), (A3)

(@) (b)

TF1cure A 2. The shear displacement and shear stress on face 1 of the cube.

Equating the other shear strains in the same manner it is found that all the shear stresses
must be equal. This absurdity is removed when the grains are allowed to rotate at rates @;, @,
and @, about the 1, 2 and 3 axis respectively (figure A 3). The rate of sliding on a face then
depends on the grain centre shear and the rate of rotation. For instance the sliding displacement
rate in the 1 direction on face 2 is given by

5?2 = élz - ‘1.’3‘ (A 4)

m m W,
@, —/>
[0) 1 oW 1 2

)

1L “

Wy /
) o)

Ficure A 3. The system of cube rotations.

When the array deforms by a given strain the cubes rotate by an amount which minimizes
the energy dissipation required to achieve that strain.
If W, is the rate of working on face 1 then

Wy oc [(68)2 + (6)21F [0 + o318, (A 5)
or in terms of strains and rotations
Wy o [(Eg1 + 0p)2 + (€qr — ) 2] HI20;
Wy o [(€1g + 3)2 + (€ — y) 2] 1122 (A 6)
Wy oc [(€13 — tg) 2+ (€3 + 0y) 2] ™12,

13 Vol. 288. A.
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194 W. BEERE

where W, and Wj are the rates of working or faces 2 and 3 respectively. The total rate of energy
dissipation is given by W = W, +W,+W; and the most favourable rotations are found by
partially differentiating with respect to the rotations at constant cube centre strain rate, i.e.
Wi, = OW[0d, = OW [0y = 0. The derivative with respect to @, is

OW [0, oc (€15 — tg)2 + (Egg + 1) ]I (égg + y)
—[(€1a+ 03)2 + (€3 — 1) Z]=™12% (€35 — y) . (A7)

Next the shear stresses are written in terms of the strain rates. Since the shear stresses are
related to sliding strains by an equation of the type o = (€d[A)U", o4 is given by

Ty = (d[A)1"[(¢35)% + (€15)7]0—IEneGs, (A8)
or, in terms of grain centre strains and rotations,
Oos = (dA)"[ (€13 — Dg)® + (€5 + 01)* ]/ (€5 + i0y), (A9)

and similarly for o,

O30 = (M) [(€15+ trg)% + (€59 — 0) 2] =2 (35— 6by). (A 10)

Reference to equations (A7), (A 9) and (A 10) shows that putting o, = 03, implies that
OW/[d@, = 0. Identically when oy, = 0y, OW/[dwy = 0 and when o3 = 03, IW[ow, = 0.
Thus, when the cubes deform they follow the path of least energy expenditure which simul-
taneously satisfies the balance of shear stresses on the cube faces.

The cubes were considered to be equally resistant to sliding on all faces. If, however, sliding
is easier say on face 1 than face 2 the material parameter A takes on different values A, A,
and A; for faces 1, 2 and 3 respectively. If the above arguments are repeated with the new
values of sliding resistance the same conclusions are reached.

The rotations and strain rates calculated for the cube model are in substantial agreement
with the rates calculated for the hexagon model.
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Discussion

E. H. Rurter (Geology Department, Imperial College, London, SW17). Dr Beeré has shown that
oscillatory grain rotations occur during diffusion creep of polycrystalline aggregates loaded
along an irrotational finite strain path. In natural rock deformation a situation of particular
interest is that of simple shear within a narrow zone (shear zone). In mylonite belts associated
with major overthrusts, rocks may have suffered shear displacements in excess of ¢a. 1 km over
shear zone widths often less than 100 m. A common microstructure involves early, severely
flattened grains either partly or totally replaced by an aggregate of small (¢a. 30 pm) recrystal-
lized grains (White 1976), recrystallization being concentrated at old grain boundaries. One is
tempted to wonder if this microstructure is stable over large ranges in strain because the new,
small grains ‘roll’ over one another, the potential for dilation being counteracted by diffusion.
A simple shear deformation involves a vorticity, so one might expect a bias in the sense of grain
rotations which accompany grain boundary sliding. Does Dr Beeré know of observational data
on any materials which indicate that such a rolling process occurs in high temperature creep
during a vortical strain history?

Reference
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Phil. Trans. R. Soc. Lond. A 283, 69-86.

W. BEerE. The treatment of grain boundary sliding was confined to uniaxial tension but the
principles can easily be applied to a shear deformation. Considering a two dimensional square
array of grains by viewing the cubic grains, figures A 1, A 2 and A 3, along the 1 axis, the shear
strain rates between cube centres €,; and é;, are given by:

€93 = €33 — (y;
s
€39 = €39+ Wy,

where é3 is the surface sliding velocity on a unit square and @, is the angular velocity.

Subtraction gives the latter:
@y = $(€55— €95) +3(€33— €35).

The sliding rates é3; and €5, depend on the boundary viscosity. If for instance é§3 = A;0% where
Ag depends on the boundary properties and = is the stress exponent, then since oy3 = 0735, the
angular velocity is given by
@y = (€35 €35) +3055(A5—A,).
Clearly if the boundaries are all equally resistant to sliding, (A3—A,) is zero and the angular
velocity o, is identical to the bulk macroscopic rotation.
13-2
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196 W. BEERE

Rotation of a grain relative to the macroscopic axes requires differences in sliding resistance
on different faces of a grain. Two phase superplastic materials consisting of & and B grains
contain a-o, o—f and p—B boundaries. An o grain will have a—« and o—B boundaries which can
account for the differences in sliding resistance. Superplastic alloys are usually deformed in
tension. The mechanism proposed for grain rolling operates equally in both tension and torsion.
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TGURE 2. A scanning electron micrograph of UQO,. The initially flat polished surface shows ledges, sliding offsets
of surface scratches and cracks resulting from grain boundary sliding during creep. (Reynolds ef al. 1975.)
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IGURE 8. Cracks in a UO, compression specimen. The wedging action of adjacent grains coupled with grain
boundary sliding produces tensile forces and cracking. (Reynolds ef al. 1975.)
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IGURE 13. Grain boundary sliding in aluminium revealed by displacements in an initially rectangular 8um grid.
Sliding between grains 1 and 3 has created a slip band in grain 2. (Pond ef al. 1976.)
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